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The projection operator based newton method for trajectory optimization
(pronto) is an iterative algorithm which, in its simplest form, allows one to
perform local Newton (or quasi-Newton) optimization of the cost functional

h((x(·), u(·))) :=
∫ tf

0

l(x(τ), u(τ), τ) dτ +m(x(tf ))

over the set of trajectories of a nonlinear system ẋ = f(x, u), x ∈ Rn, u ∈ Rm,
subject to a fixed initial condition x0. Here, we use the word trajectory in an
extended sense to indicate the state-control pair η(t) = (x(t), u(t)), t ≥ 0, that
satisfies ẋ(t) = f(x(t), u(t)) for all t ≥ 0. As usual, “all t” means “almost all t”

in the sense that x(t) = x(0)+
∫ t

0
f(x(τ), u(τ)) dτ where

∫
. . . dτ is the Lebesgue

integral. The cost functional h above, defined in terms of the incremental and
terminal costs l(·, ·) and m(·), and the control vector field f are taken to be
sufficiently smooth (C2 in (x, u) and continuous in t is usually enough) and
regular [3].

As shown in [4], the set T of trajectories of the nonlinear control system
ẋ = f(x, u) has the structure of a (infinite dimensional) Banach manifold, a
fact that allows one to use vector space operations [9] to effectively explore it.
To work on the trajectory manifold T , one projects state-control curves in the
ambient Banach space onto T by using a local linear time-varying trajectory
tracking controller. To this end, suppose that ξ = (α(·), µ(·)) is a bounded
state-control curve (an approximate trajectory) and let η = (x(·), u(·)) be the
trajectory of ẋ = f(x, u) determined by the nonlinear feedback system

ẋ(t) = f(x(t), u(t)),

u(t) = µ(t) +K(t)(α(t)− x(t)),

with x(0) = x0. Under the hypotheses that the control vector field f is Cr and
the gain K is bounded [4], this feedback system defines a Cr nonlinear operator

P : ξ = (α(·), µ(·)) 7→ η = (x(·), u(·)) .

It is straightforward to see that ξ is a fixed point of P, ξ = P(ξ), if and only if
ξ is a trajectory of the control system ẋ = f(x, u). This ensures that P2 = P
so that P is a projection operator. With this projection operator at hand, one
can see [3] that the constrained and unconstrained optimization problems

min
ξ∈T

h(ξ) and min
ξ

h(P(ξ))



are essentially equivalent in the sense that a solution to the first constrained
problem is a solution to the second unconstrained problem, while a solution to
the second problem is, projected by P, a solution to the first problem. Using
these facts, one may develop Newton and quasi-Newton descent methods for
trajectory optimization in an effectively unconstrained manner by working with
the cost functional g(ξ) := h(P(ξ)).

The projection operator based newton method for trajectory optimization
(pronto) is given by [3]

Algorithm (Projection operator Newton method)

given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K if desired/needed

ζi = argminζ∈Tξi
T Dh(ξi) · ζ + 1

2 D
2g(ξi) · (ζ, ζ) (search direction)

γi = argminγ∈(0,1] g(ξi + γζi) (step size)

ξi+1 = P(ξi + γiζi) (update)

end

Note that the functional g(·) and the projection operator P depend on the choice
of the feedback K. Also, Dg(ξi) and D2g(ξi) are the first and second Fréchet
derivatives of the Banach space functional g. When ξ ∈ T and ζ ∈ TξT , the
first derivative Dg(ξ) · ζ simply equals Dh(ξ) · ζ, i.e., it does not depend on P.

At each step, the minimization of a second order approximation of the ex-
tended cost functional g provides a search direction. Then an optimal step size
is computed through a (backtracking) line search (a pure Newton method would
use a fixed step size of γi = 1). Combining the search direction ζi with step size
γi a new update trajectory is computed and the algorithm restarts (unless a ter-
mination condition is met). An illustration of the projection operator approach
is shown in Figure 1.

The computed optimal search direction ζi is constrained to lie on the tangent
space to the trajectory manifold at the current iterate, i.e., ζi ∈ TξiT . This is
not restrictive since, as established in [4, Proposition 3.2], P can be used to
define a bijection between the neighborhood of a trajectory ξ ∈ T and the
origin of its tangent space TξT . The condition ζi ∈ TξiT simply means that
ζi(t) := (zi(t), vi(t)) ∈ Rn ×Rm, t ≥ 0, is a trajectory of the linearization of the
control system ẋ = f(x, u) about the current trajectory iterate ξi. The search
direction subproblem is, in practice, a linear quadratic (LQ) optimal control
problem, where the functional to be minimized, Dh(ξi) · ζ + 1

2D
2g(ξi) · (ζ, ζ),

is the quadratic model functional given by the first two terms of the Taylor
expansion of the functional g(ξi + ζ) with respect to ζ [3, Section 3]. The
LQ problem is defined using first and second order derivatives of the nonlinear
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Figure 1: The projection operator approach; (a) at each iteration, the lineariza-
tion of the control system about the trajectory ξi defines the tangent space to
the trajectory manifold T at ξi; (b) the constrained minimization over the tan-
gent space of the second order approximation of the extended cost functional
g = h ◦ P yields the search direction ζi; (c) the optimal step size is computed
through a line search along ζi; (d) the search direction ζi and step size γi are
combined to obtain a new update trajectory ξi+1.

system and the incremental and terminal costs about the current (nonlinear
system) trajectory iterate. It can be solved by computing the solution to a
suitable differential Riccati equation (and an associated adjoint system). In
particular, in the vector space case, the usual chain rule applies and one finds
that D2g(ξ) · (ζ, ζ) is a well defined object given by

D2g(ξ)·(ζ, ζ) = D2h(ξ)·(ζ, ζ)+Dh(ξ)·D2P(ξ) · (ζ, ζ), (1)

for ξ ∈ T and ζ ∈ TξT [4]. Note that D2P(ξ) is the second Fréchet derivative
of the Banach space operator P.

Our work has been focused on understanding the nature of highly nonlinear
dynamic systems and especially those with significant maneuvering objectives.
We believe that trajectory optimization provides strong tools and techniques for
discovering and understanding important dynamic features for a broad range
of systems. We also believe that it is only by doing significant numerical ex-
ploration on difficult nonlinear systems that we begin to understand how such
explorations may be accomplished through the use of appropriate models for
the systems together with appropriate cost objectives and constraints. To this
end we have worked with systems ranging from classical nonlinear pendulum
systems [1, 5] to air [12, 15, 11], land [10, 23, 13, 2, 14, 24, 25], and marine [7]
vehicles, and even earthquake shaketables [6]. Since many systems of interest
do not evolve in a flat space, we have devoted significant effort to understand-
ing and extending the projection operator approach to work with manifold and
especially with Lie groups [18, 19, 20, 21, 16, 22, 17].
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Throughout this work, we have developed important insights into the na-
ture of trajectory functionals and their minimization. Second order properties
of the trajectory functionals have helped us to discover cases where one would
expect a functional to have a nice minimizer but in fact one does not exist. Bar-
rier functionals have been used to effectively manage input, state, and mixed
constraints. Working with such a variety of systems and objectives, we have
developed a sort-of experts toolkit that makes such investigations (somewhat)
more tractable. We have found that, in order to do effective trajectory explo-
ration and optimization, one must indeed become an expert on the system under
investigation!
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